mvpa2.testing.datasetsΒΆ
Provides convenience datasets for unittesting.
Also performs testing of storing/reloading datasets into hdf5 file if cfg.getboolean(‘tests’, ‘use hdf datasets’
Functions
autocorrelated_noise(ds, sr, cutoff[, lfnl, ...]) |
Generate a dataset with samples being temporally autocorrelated noise. |
chirp_linear(n_instances[, n_features, ...]) |
Generates simple dataset for linear regressions |
double_gamma_hrf(t[, A1, W1, K1, A2, W2, K2]) |
Hemodynamic response function model. |
dumb_feature_binary_dataset() |
Very simple binary (2 labels) dataset |
dumb_feature_dataset() |
Create a very simple dataset with 2 features and 3 labels |
generate_testing_datasets(\*arg, \*\*kwargs) |
|
get_mv_pattern(s2n) |
Simple multivariate dataset |
get_random_rotation(ns[, nt, data]) |
Return some random rotation (or rotation + dim reduction) matrix |
linear1d_gaussian_noise([size, slope, ...]) |
A straight line with some Gaussian noise. |
linear_awgn([size, intercept, slope, ...]) |
Generate a dataset from a linear function with AWGN (Added White Gaussian Noise). |
local_random_affine_transformations(ds, ...) |
Distort a dataset in the local neighborhood of selected features. |
multiple_chunks(func, n_chunks, \*args, \*\*kwargs) |
Replicate datasets multiple times raising different chunks |
noisy_2d_fx(size_per_fx, dfx, sfx, center[, ...]) |
Yet another generator of random dataset |
normal_feature_dataset([perlabel, nlabels, ...]) |
Generate a univariate dataset with normal noise and specified means. |
pathjoin(a, \*p) |
Join two or more pathname components, inserting ‘/’ as needed. |
pure_multivariate_signal(patterns[, ...]) |
Create a 2d dataset with a clear purely multivariate signal. |
random_affine_transformation(ds[, ...]) |
Distort a dataset by random scale, shift, and rotation. |
reseed_rng() |
Decorator to assure the use of MVPA_SEED while running the test |
saveload_warehouse() |
Store all warehouse datasets into HDF5 and reload them. |
simple_hrf_dataset([events, hrf_gen, ...]) |
events: list of Events or ndarray of onsets for simple(r) designs |
sin_modulated(n_instances, n_features[, ...]) |
Generate a (quite) complex multidimensional non-linear dataset |
single_gamma_hrf(t[, A, W, K]) |
Hemodynamic response function model. |
vstack(datasets[, a, fa]) |
Stacks datasets vertically (appending samples). |
wr1996([size]) |
Generate ‘6d robot arm’ dataset (Williams and Rasmussen 1996) |
Classes
Dataset(samples[, sa, fa, a]) |
Generic storage class for datasets with multiple attributes. |
Event(\*\*kwargs) |
Simple class to define properties of an event. |
HollowSamples([shape, sid, fid, dtype]) |
Samples container that doesn’t store samples. |
IndexQueryEngine([sorted]) |
Provides efficient query engine for discrete spaces. |
OddEvenPartitioner([usevalues]) |
Create odd and even partitions based on a sample attribute. |



