mvpa2.clfs.baseΒΆ
Plumbing for all learners (classifiers and regressions)
Functions
accepts_dataset_as_samples(fx) |
Decorator to extract samples from Datasets. |
accepts_samples_as_dataset(fx) |
Decorator to wrap samples into a Dataset. |
deepcopy(x[, memo, _nil]) |
Deep copy operation on arbitrary Python objects. |
idhash(val) |
Craft unique id+hash for an object |
is_datasetlike(obj) |
Check if an object looks like a Dataset. |
Classes
AttributeMap([map, mapnumeric, ...]) |
Map to translate literal values to numeric ones (and back). |
Classifier([space]) |
Abstract classifier class to be inherited by all classifiers |
ConditionalAttribute([enabled]) |
Simple container intended to conditionally store the value |
ConfusionMatrix([labels, labels_map]) |
Class to contain information and display confusion matrix. |
Dataset(samples[, sa, fa, a]) |
Generic storage class for datasets with multiple attributes. |
Learner([auto_train, force_train]) |
Common trainable processing object. |
Measure([null_dist]) |
A measure computed from a Dataset |
Parameter(default[, constraints, ro, index, ...]) |
This class shall serve as a representation of a parameter. |
RegressionStatistics(\*\*kwargs) |
Class to contain information and display on regression results. |
Exceptions
AttributeMap([map, mapnumeric, ...]) |
Map to translate literal values to numeric ones (and back). |
Classifier([space]) |
Abstract classifier class to be inherited by all classifiers |
ConditionalAttribute([enabled]) |
Simple container intended to conditionally store the value |
ConfusionMatrix([labels, labels_map]) |
Class to contain information and display confusion matrix. |
Dataset(samples[, sa, fa, a]) |
Generic storage class for datasets with multiple attributes. |
Learner([auto_train, force_train]) |
Common trainable processing object. |
Measure([null_dist]) |
A measure computed from a Dataset |
Parameter(default[, constraints, ro, index, ...]) |
This class shall serve as a representation of a parameter. |
RegressionStatistics(\*\*kwargs) |
Class to contain information and display on regression results. |



