mvpa2.clfs.transerror.linregress¶

`mvpa2.clfs.transerror.``linregress`(x, y=None)

Calculate a linear least-squares regression for two sets of measurements.

Parameters: x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. slope : float slope of the regression line intercept : float intercept of the regression line rvalue : float correlation coefficient pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. stderr : float Standard error of the estimated gradient.

`optimize.curve_fit`
Use non-linear least squares to fit a function to data.
`optimize.leastsq`
Minimize the sum of squares of a set of equations.

Examples

```>>> from scipy import stats
>>> np.random.seed(12345678)
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
```

# To get coefficient of determination (r_squared)

```>>> print("r-squared:", r_value**2)
('r-squared:', 0.080402268539028335)
```