mvpa2.clfs.smlrΒΆ
Sparse Multinomial Logistic Regression classifier.
Functions
Doi(\*args, \*\*kwargs) | 
Perform no good and no bad | 
accepts_dataset_as_samples(fx) | 
Decorator to extract samples from Datasets. | 
expand_contraint_spec(spec) | 
Helper to translate literal contraint specs into functional ones | 
Classes
AltConstraints(\*constraints) | 
Logical OR for constraints. | 
Classifier([space]) | 
Abstract classifier class to be inherited by all classifiers | 
ConditionalAttribute([enabled]) | 
Simple container intended to conditionally store the value | 
Constraint | 
Base class for input value conversion/validation. | 
Constraints(\*constraints) | 
Logical AND for constraints. | 
Dataset(samples[, sa, fa, a]) | 
Generic storage class for datasets with multiple attributes. | 
EnsureBool | 
Ensure that an input is a bool. | 
EnsureChoice(\*values) | 
Ensure an input is element of a set of possible values | 
EnsureDType(dtype) | 
Ensure that an input (or several inputs) are of a particular data type. | 
EnsureFloat() | 
Ensure that an input (or several inputs) are of a data type ‘float’. | 
EnsureInt() | 
Ensure that an input (or several inputs) are of a data type ‘int’. | 
EnsureListOf(dtype) | 
Ensure that an input is a list of a particular data type | 
EnsureNone | 
Ensure an input is of value None | 
EnsureRange([min, max]) | 
Ensure an input is within a particular range | 
EnsureStr | 
Ensure an input is a string. | 
EnsureTupleOf(dtype) | 
Ensure that an input is a tuple of a particular data type | 
Parameter(default[, constraints, ro, index, ...]) | 
This class shall serve as a representation of a parameter. | 
SMLR(\*\*kwargs) | 
Sparse Multinomial Logistic Regression Classifier. | 
SMLRWeights(clf[, force_train]) | 
SensitivityAnalyzer that reports the weights SMLR trained | 
Sensitivity(clf[, force_train]) | 
Sensitivities of features for a given Classifier. | 
Exceptions
AltConstraints(\*constraints) | 
Logical OR for constraints. | 
Classifier([space]) | 
Abstract classifier class to be inherited by all classifiers | 
ConditionalAttribute([enabled]) | 
Simple container intended to conditionally store the value | 
Constraint | 
Base class for input value conversion/validation. | 
Constraints(\*constraints) | 
Logical AND for constraints. | 
Dataset(samples[, sa, fa, a]) | 
Generic storage class for datasets with multiple attributes. | 
EnsureBool | 
Ensure that an input is a bool. | 
EnsureChoice(\*values) | 
Ensure an input is element of a set of possible values | 
EnsureDType(dtype) | 
Ensure that an input (or several inputs) are of a particular data type. | 
EnsureFloat() | 
Ensure that an input (or several inputs) are of a data type ‘float’. | 
EnsureInt() | 
Ensure that an input (or several inputs) are of a data type ‘int’. | 
EnsureListOf(dtype) | 
Ensure that an input is a list of a particular data type | 
EnsureNone | 
Ensure an input is of value None | 
EnsureRange([min, max]) | 
Ensure an input is within a particular range | 
EnsureStr | 
Ensure an input is a string. | 
EnsureTupleOf(dtype) | 
Ensure that an input is a tuple of a particular data type | 
Parameter(default[, constraints, ro, index, ...]) | 
This class shall serve as a representation of a parameter. | 
SMLR(\*\*kwargs) | 
Sparse Multinomial Logistic Regression Classifier. | 
SMLRWeights(clf[, force_train]) | 
SensitivityAnalyzer that reports the weights SMLR trained | 
Sensitivity(clf[, force_train]) | 
Sensitivities of features for a given Classifier. | 

  

