mvpa2.clfs.gpr.GeneralizedLinearKernel¶
-
class
mvpa2.clfs.gpr.GeneralizedLinearKernel(*args, **kwargs)¶ The linear kernel class.
Notes
Available conditional attributes:
gradients: Dictionary of gradients per a parametergradientslog: Dictionary of gradients per a parameter in logspace
(Conditional attributes enabled by default suffixed with
+)Attributes
descrDescription of the object if any Methods
add_conversion(typename, methodfull, methodraw)Adds methods to the Kernel class for new conversions as_ls(kernel)as_np()Converts this kernel to a Numpy-based representation as_raw_ls(kernel)as_raw_np()Directly return this kernel as a numpy array. as_raw_sg(kernel)Converts directly to a Shogun kernel as_sg(kernel)Converts this kernel to a Shogun-based representation cleanup()Wipe out internal representation compute(ds1[, ds2])Generic computation of any kernel computed(\*args, \*\*kwargs)Compute kernel and return self reset()Initialize instance of GeneralizedLinearKernel
Parameters: sigma_0
A simple constant squared value which is broadcasted across kernel. In the case of GPR – standard deviation of the Gaussian prior probability Normal(0, sigma_0**2) of the intercept of the linear regression. [Default: 1.0]
Sigma_p
A generic scalar or vector, or diagonal matrix to scale all dimensions or associate different scaling to each dimensions while computing te kernel matrix: k(x_A,x_B) = x_A^\top \Sigma_p x_B + \sigma_0^2. In the case of GPR – a scalar or a diagonal of covariance matrix of the Gaussian prior probability Normal(0, Sigma_p) on the weights of the linear regression. [Default: 1.0]
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
Attributes
descrDescription of the object if any Methods
add_conversion(typename, methodfull, methodraw)Adds methods to the Kernel class for new conversions as_ls(kernel)as_np()Converts this kernel to a Numpy-based representation as_raw_ls(kernel)as_raw_np()Directly return this kernel as a numpy array. as_raw_sg(kernel)Converts directly to a Shogun kernel as_sg(kernel)Converts this kernel to a Shogun-based representation cleanup()Wipe out internal representation compute(ds1[, ds2])Generic computation of any kernel computed(\*args, \*\*kwargs)Compute kernel and return self reset()-
reset()¶



