, b, out=None)

Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of a and the second-to-last of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

a : array_like

First argument.

b : array_like

Second argument.

out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for dot(a,b). This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible.


output : ndarray

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If out is given, then it is returned.



If the last dimension of a is not the same size as the second-to-last dimension of b.

See also

Complex-conjugating dot product.
Sum products over arbitrary axes.
Einstein summation convention.
‘@’ operator as method with out parameter.


>>>, 4)

Neither argument is complex-conjugated:

>>>[2j, 3j], [2j, 3j])

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>>, b)
array([[4, 1],
       [2, 2]])
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>>, b)[2,3,2,1,2,2]
>>> sum(a[2,3,2,:] * b[1,2,:,2])