Truly, there are lies, brazen lies, and statistics, but let's not, my friends, forget the psychology!

- A. and B. Stroogatskie "The bug in an ant hill", 1979

Reliable Decoding of Neural Data

Yaroslav O. Halchenko², Michael Hanke¹

¹Dept. of Psychology, University of Magdeburg

Goal of Neuroscience

The task of neural science is to explain behavior in terms of the activities of the brain

Eric Kandel, Principles of Neural science, 4th ed., 2000

Goal of Neuroscience

The task of neural science is to explain behavior in terms of the activities of the brain

Eric Kandel, Principles of Neural science, 4th ed., 2000

Brain Activity

Means of Investigation

The task of neural science is to explain behavior in terms of the activities of the brain

Eric Kandel, Principles of Neural science, 4th ed., 2000

Behavior

Response time

Accuracy

. . .

Brain Activity

Extracellular Recordings

Electroencephalography (EEG)

Magnitoencephalography (MEG)

Functional Magnetic Resonance Imaging (fMRI)

. . .

Means of Investigation

The task of neural science is to explain behavior in terms of the activities of the brain

Eric Kandel, Principles of Neural science, 4th ed., 2000

Behavior

Response time

Accuracy

. . .

Brain Activity

Extracellular Recordings

Electroencephalography (EEG)

Magnitoencephalography (MEG)

Functional Magnetic Resonance Imaging (fMRI)

. . .

Behavior \Rightarrow Neural Activity

Question Design

Behavior \Rightarrow Neural Activity

Goals

Localization Early visual perception Object recognition Motor response

Information flow Attention Executive control Inhibition

. . .

Neural Processing and Encoding

SPM via GLM

Question Design

SPM via GLM

Limitations

- Carry no validity testing (not cross-validated)
- Are mass-univariate
- Do not care about cross-trial variance
- Account neither for not-controlled sources of variance, nor covariance/causal structure
- Rely on restrictive assumptions (forward EEG/MEG/BOLD model)
- Obliterate the information through averaging and/or spatial smoothing

Limitations

- Carry no validity testing (not cross-validated)
- Are mass-univariate
- Do not care about cross-trial variance
- Account neither for not-controlled sources of variance, nor covariance/causal structure
- Rely on restrictive assumptions (forward EEG/MEG/BOLD model)
- Obliterate the information through averaging and/or spatial smoothing
- Are behavior-based models ignorant of the brain structure
- Are confirmatory approaches dragged into solving exploratory problems

Known Organization of the Visual System

Van Essen et al. (1992)

Model of the Visual System

Serre et al. (2007)

From Blobology to Models

From Blobology to Models

Haxby et al. (2001)

From Blobology to Models

Haxby et al. (2001)

Decoding Approach: Reverse the Flow!

Decoding Approach: Analysis

Decoding Approach...

- Is data modality neutral
- Could incorporate the models of the brain functioning
- Is driven by the data, not by the assumptions
- Is capable of per-trial analysis
- Provides validity testing (cross-validation)
- Accounts for various sources of variance and covariance/causal structure (Sato et al., 2008)
- Relaxes modeling assumptions of the signals

Decoding Approach...

- Is data modality neutral
- Could incorporate the models of the brain functioning
- Is driven by the data, not by the assumptions
- Is capable of per-trial analysis
- Provides validity testing (cross-validation)
- Accounts for various sources of variance and covariance/causal structure (Sato et al., 2008)
- Relaxes modeling assumptions of the signals
- Provide super-acuity effect (Kamitani & Tong, 2005)

The task of neural science is to explain behavior in terms of the activities of the brain

Eric Kandel, Principles of Neural science, 4th ed., 2000

. . .

Behavior

Response time

Accuracy

. . .

Brain Activity

Extracellular Recordings

Electroencephalography (EEG)

Magnitoencephalography (MEG)

Functional Magnetic Resonance Imaging (fMRI)

Extracellular Recordings

			Fring ate (groves)
		Time (s)	
		Brain Acti	vity
Temporal Resolution:	High	Extracellular Recordings	
Spatial Resolution:	None	Electroencephalography (EEG)	
Invasive:	Yes	Magnitoencephalography (MEG,	
Direct Measurement:	Yes	Functional Magnetic Resonance Imaging (fMRI)	

. . .

Extracellular Recordings

Experiment

- Auditory experiment (Thanks Dr. A. Luczak, Dr. K.D. Harris)
 - Five pure tones (3, 7, 12, 20, 30 kHz)
 - Five different natural sounds
- Animal research: rat
- Eight four-site recording shanks
- 105 units (neurons)

Goal

- Confirm relevance of the recorded neural population to auditory processing
- Assess relevance of each neuron toward processing of specific auditory stimulus

Decoding: SMLR

Hanke et al. (2009)

Sensitivity Analysis

EEG/MEG

EEG

Temporal Resolution:	High
Spatial Resolution:	Low
Invasive:	No
Direct Measurement:	Yes

Brain Activity

Extracellular Recordings

Electroencephalography (EEG)

Magnitoencephalography (MEG)

Functional Magnetic Resonance Imaging (fMRI)

EEG

Experiment

- Cognitive modality: visual processing
- Data from Fründ et al. (2008)
- Experimental task: meaningful vs "object-like"
- Analysis task: colored vs line-art
- 852 trials
- 140 time samples per trial, 31 EEG electrode

Goals

- Achieve reliable per-trial analysis of EEG data
- Confirm results of the conventional analysis
- Show advantages of the decoding approach

EEG: Pz Electrode

Hanke et al. (2009)

EEG: Temporal Profile

Hanke et al. (2009)

Functional MRI (fMRI)

Temporal Resolution:	Low
Spatial Resolution:	High
Invasive:	No
Direct Measurement:	No

Brain Activity

Extracellular Recordings Electroencephalography (EEG) Magnitoencephalography (MEG) Functional Magnetic Resonance Imaging (fMRI)

Different Levels of Decoding

Stimuli Reconstruction: Decoder

Miyawaki et al. (2008)

Stimuli Reconstruction: Results

Miyawaki et al. (2008)

Analysis Strategies Searchlight

- Run classifier on sphere-shaped feature clusters
- Retrieve spatial discriminance map (SDM)
- e.g. Kriegeskorte et al. (2006)

Analysis Strategies Searchlight

- Run classifier on sphere-shaped feature clusters
- Retrieve spatial discriminance map (SDM)
- e.g. Kriegeskorte et al. (2006)

Classify and dissect

- Run classifier on combinations of predefined ROIs
- Determine impact of each ROI by change in classifier error
- e.g. Pessoa & Padmala (2007)

Analysis Strategies Searchlight

- Run classifier on sphere-shaped feature clusters
- Retrieve spatial discriminance map (SDM)
- ▶ e.g. Kriegeskorte et al. (2006)

Classify and dissect

- Run classifier on combinations of predefined ROIs
- Determine impact of each ROI by change in classifier error
- e.g. Pessoa & Padmala (2007)

Knockout and classify

- Transform the data using PCA projection
- Remove components and compare change in error
- e.g. Carlson et al. (2003)

Sensitivity Analysis

What is it?

- Not primarily generalization error-based
- Inspections of the ML model parameters
- e.g. Hanson et al. (2004)

Strategy

- 1. Preprocess the data
- 2. Train (fit) the model to the data
- 3. Ensure the validity of the model (cross-validation)
- 4. Extract model parameters/sensitivities and visualize them
- 5. Interpret the results

Sensitivity Analysis: 4 categories (SMLR)

Hanke et al. (2009)

Exploratory Analysis: Previous Findings

Hanson et al. (2004)

Exploratory Analysis: Multiple Areas

Hanke et al. (2009)

Unimodal Analysis: Summary

Decoding approach ...

- can reliably describe the behavior in terms of neural activity
- can be used across different neural data modalities at different levels of investigation
- cares about constructing reliable estimation
- allows to account for cross-trial variance and covariance structure
- provides super-acuity effect

Multimodal Neural Data Analysis

Promises

- Finer spatio-temporal resolution
- Improved detection power
- Improved stability of the results

Multimodal Neural Data Analysis

Promises

- Finer spatio-temporal resolution
- Improved detection power
- Improved stability of the results

Difficulties

- True neural signal is not known
- Unknown model of BOLD response
- Variability of BOLD across subjects and within the brain
- EEG signal distortion

Existing Approaches

Correlative analysis

Seeded or preconditioned E/MEG inverse

Component analyzes

- Bayesian inference
- Dynamic systems models

Existing Approaches

Correlative analysis

⇒Rigid simplistic BOLD model, mass-univariate

- Seeded or preconditioned E/MEG inverse
 - ⇒Bias toward fMRI analysis results, E/MEG inverse problem, disregard of temporal evolution of fMRI
- Component analyzes

⇒Rigid simplistic BOLD model, ad-hoc components matching

- Bayesian inference
- Dynamic systems models

⇒Simplifications to reduce parametrization

Methodology: $EEG \Rightarrow fMRI$

Methodology: $EEG \Rightarrow fMRI$

Real EEG/fMRI Data Analysis

Experiment

- Auditory experiment (Thaerig et al., 2008):
 - Mono-aural stimulation
 - 2 levels of stimulation (60 and 80 dB)
- ▶ fMRI: FLASH sequence with 147 volumes at TR=11 sec
- EEG: 29 electrodes, corrected for MR-artifacts

Goals

- Validate the suggested methodology
- Localize the areas active during the task
- Localize the areas with dominant reliance on specific EEG rhythms

Multimodal Mapping

Multimodal Mapping: Compare to GLM

SVR Mapping

GLM

Sensitivity Analysis: Spatio-Temporal Profile

Sensitivity Analysis: α -band

T8 EEG Channel Sensitivities

Multimodal Analysis: Summary

- Validated suggested methodology on simulated and real EEG/fMRI data
- Provided localization of neural activity in the areas complementary to the results of GLM
- Provided localization for specific EEG rhythms

Additional Promises

- Interpolation of fMRI based on EEG
 - Boost of temporal resolution of fMRI
 - Improved slice-timing correction
- Filtering of fMRI and EEG

References

- Carlson, T. A., Schrater, P., & He, S. (2003). Patterns of activity in the categorical representations of objects. J Cogn Neurosci, 15(5), 704–17.
- Fründ, I., Busch, N. A., Schadow, J., Gruber, T., Körner, U., & Herrmann, C. S. (2008). Time pressure modulates electrophysiological correlates of early visual processing. *PLoS ONE*, 3(2), e1675.
- Halchenko, Y. O. (2009). Predictive decoding of neural data. Unpublished doctoral dissertation, NJIT, Newark, NJ, USA.
- Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., et al. (2009). PyMVPA: A unifying approach to the analysis of neuroscientific data. *Frontiers in Neuroinformatics*, 3(3).
- Hanson, S., Matsuka, T., & Haxby, J. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area? *NeuroImage*, 23, 156–166.
- Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. *Science*, 293, 2425–2430.
- Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8, 679–685.
- Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the USA, 103, 3863–3868.
- Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M. aki, Morito, Y., Tanabe, H. C., et al. (2008, December). Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. *Neuron*, 60(5), 915–29.
- Pessoa, L., & Padmala, S. (2007). Decoding near-threshold perception of fear from distributed single-trial brain activation. *Cerebral Cortex*, 17, 691–701.
- Sato, J. R., Mourão-Miranda, J., Graça Morais Martin, M. da, Amaro Jr., E., Morettin, P. A., & Brammer, M. J. (2008). The impact of functional connectivity changes on support vector machines mapping of fMRI data. *Journal of Neuroscience Methods, In Press, Corrected Proof.*
- Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104(15), 6424.
- Thaerig, S., Behne, N., Schadow, J., Lenz, D., Scheich, H., Brechmann, A., et al. (2008, March). Sound level dependence of auditory evoked potentials: simultaneous eeg recording and low-noise fmri. Int J Psychophysiol, 67(3), 235–41.
- Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: an integrated systems perspective. Science, 255, 419–423.

Welcome Michael Hanke and PyMVPA!

Thank you