
Truly, there are lies, brazen lies, and statistics, but let’s not,
my friends, forget the psychology!

– A. and B. Stroogatskie “The bug in an ant hill”, 1979
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Goals



SPM via GLM



SPM via GLM



Limitations

I Carry no validity testing (not cross-validated)
I Are mass-univariate
I Do not care about cross-trial variance
I Account neither for not-controlled sources of variance,

nor covariance/causal structure
I Rely on restrictive assumptions

(forward EEG/MEG/BOLD model)
I Obliterate the information through averaging and/or spatial

smoothing

I Are behavior-based models ignorant of the brain structure
I Are confirmatory approaches dragged into solving

exploratory problems
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Known Organization of the Visual System

Van Essen et al. (1992)



Model of the Visual System

Serre et al. (2007)



From Blobology to Models
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Decoding Approach: Reverse the Flow!



Decoding Approach: Analysis



Decoding Approach. . .

I Is data modality neutral
I Could incorporate the models of the brain functioning
I Is driven by the data, not by the assumptions
I Is capable of per-trial analysis
I Provides validity testing (cross-validation)
I Accounts for various sources of variance and

covariance/causal structure (Sato et al., 2008)
I Relaxes modeling assumptions of the signals

I Provide super-acuity effect (Kamitani & Tong, 2005)
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Extracellular Recordings



Extracellular Recordings

Experiment

I Auditory experiment (Thanks Dr. A. Luczak,
Dr. K.D. Harris)

I Five pure tones (3, 7, 12, 20, 30 kHz)
I Five different natural sounds

I Animal research: rat
I Eight four-site recording shanks
I 105 units (neurons)

Goal
I Confirm relevance of the recorded neural population to

auditory processing
I Assess relevance of each neuron toward processing of

specific auditory stimulus



Decoding: SMLR

Hanke et al. (2009)



Sensitivity Analysis



EEG/MEG



EEG

Experiment

I Cognitive modality: visual processing
I Data from Fründ et al. (2008)
I Experimental task: meaningful vs “object-like”
I Analysis task: colored vs line-art
I 852 trials
I 140 time samples per trial, 31 EEG electrode

Goals

I Achieve reliable per-trial analysis of EEG data
I Confirm results of the conventional analysis
I Show advantages of the decoding approach



EEG: Pz Electrode
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EEG: Temporal Profile

Hanke et al. (2009)



Functional MRI (fMRI)



Different Levels of Decoding





Stimuli Reconstruction: Decoder

Miyawaki et al. (2008)



Stimuli Reconstruction: Results

Miyawaki et al. (2008)





Analysis Strategies
Searchlight

I Run classifier on sphere-shaped feature clusters
I Retrieve spatial discriminance map (SDM)
I e.g. Kriegeskorte et al. (2006)

Classify and dissect

I Run classifier on combinations of predefined ROIs
I Determine impact of each ROI by change in classifier error
I e.g. Pessoa & Padmala (2007)

Knockout and classify

I Transform the data using PCA projection
I Remove components and compare change in error
I e.g. Carlson et al. (2003)
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Sensitivity Analysis

What is it?
I Not primarily generalization error-based
I Inspections of the ML model parameters
I e.g. Hanson et al. (2004)

Strategy

1. Preprocess the data
2. Train (fit) the model to the data
3. Ensure the validity of the model (cross-validation)
4. Extract model parameters/sensitivities and visualize them
5. Interpret the results



Sensitivity Analysis: 4 categories (SMLR)

Hanke et al. (2009)





Exploratory Analysis: Previous Findings

ANIMACY  Discovered!

ANIMACY

INANIMACY

Hanson et al. (2004)



Exploratory Analysis: Multiple Areas

Hanke et al. (2009)



Unimodal Analysis: Summary

Decoding approach . . .
I can reliably describe the behavior in terms of neural activity
I can be used across different neural data modalities at

different levels of investigation
I cares about constructing reliable estimation
I allows to account for cross-trial variance and covariance

structure
I provides super-acuity effect



Multimodal Neural Data Analysis

Promises
I Finer spatio-temporal resolution
I Improved detection power
I Improved stability of the results

Difficulties
I True neural signal is not known
I Unknown model of BOLD response
I Variability of BOLD across subjects and within the brain
I EEG signal distortion
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Existing Approaches

I Correlative analysis

⇒Rigid simplistic BOLD model, mass-univariate

I Seeded or preconditioned E/MEG inverse

⇒Bias toward fMRI analysis results, E/MEG inverse
problem, disregard of temporal evolution of fMRI

I Component analyzes

⇒Rigid simplistic BOLD model, ad-hoc components
matching

I Bayesian inference
I Dynamic systems models

⇒Simplifications to reduce parametrization
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Methodology: EEG⇒ fMRI

Halchenko (2009)
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Real EEG/fMRI Data Analysis

Experiment

I Auditory experiment (Thaerig et al., 2008):
I Mono-aural stimulation
I 2 levels of stimulation (60 and 80 dB)

I fMRI: FLASH sequence with 147 volumes at TR=11 sec
I EEG: 29 electrodes, corrected for MR-artifacts

Goals
I Validate the suggested methodology
I Localize the areas active during the task
I Localize the areas with dominant reliance on specific EEG

rhythms



Multimodal Mapping

Halchenko (2009)



Multimodal Mapping: Compare to GLM

SVR Mapping GLM

Halchenko (2009)



Sensitivity Analysis: Spatio-Temporal Profile

Halchenko (2009)



Sensitivity Analysis: α-band

Halchenko (2009)



T8 EEG Channel Sensitivities

Halchenko (2009)



Multimodal Analysis: Summary

I Validated suggested methodology on simulated and real
EEG/fMRI data

I Provided localization of neural activity in the areas
complementary to the results of GLM

I Provided localization for specific EEG rhythms

Additional Promises
I Interpolation of fMRI based on EEG

I Boost of temporal resolution of fMRI
I Improved slice-timing correction

I Filtering of fMRI and EEG
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Welcome Michael Hanke and PyMVPA!

Thank you
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