http://neuro.debian.net



# Overview of statistical evaluation techniques adopted by publicly available MVPA toolboxes

Yaroslav O. Halchenko

Center for Cognitive Neuroscience, Psychological and Brain Sciences Department, **Dartmouth College** PyMVPA, NeuroDebian, DataLad, duecredit

OHBM 2015. Honolulu HI

# Disclaimer #1: I do PyMVPA



- Andre Marquand (PROBID, Matlab)
- Francisco Pereira (searchmight, Matlab)
- Gael Varoquaux (nilearn/scikit-learn, Python)
- Jessica Schrouff (PRoNTo, Matlab)
- Martin Hebart (TDT, Matlab)
- Mitsuaki Tsukamoto (BDTB, Matlab)
- Nick Oosterhof (CoSMoMVPA, Matlab)
- Nikolaus Kriegeskorte (RSA, Matlab) [will not talk about]

- Andre Marquand (PROBID, Matlab)
- Francisco Pereira (searchmight, Matlab)
- Gael Varoquaux (nilearn/scikit-learn, Python)
- Jessica Schrouff (PRoNTo, Matlab)
- Martin Hebart (TDT, Matlab)
- Mitsuaki Tsukamoto (BDTB, Matlab)
- Nick Oosterhof (CoSMoMVPA, Matlab)
- Nikolaus Kriegeskorte (RSA, Matlab) [will not talk about]

Q: who uses any of the aforementioned toolkits (including PyMVPA)?

- Andre Marquand (PROBID, Matlab)
- Francisco Pereira (searchmight, Matlab)
- Gael Varoquaux (nilearn/scikit-learn, Python)
- Jessica Schrouff (PRoNTo, Matlab)
- Martin Hebart (TDT, Matlab)
- Mitsuaki Tsukamoto (BDTB, Matlab)
- Nick Oosterhof (CoSMoMVPA, Matlab)
- Nikolaus Kriegeskorte (RSA, Matlab) [will not talk about]

Q: who uses any of the aforementioned toolkits (including PyMVPA)? Q: who uses some other (not your own) toolkit?

- Andre Marquand (PROBID, Matlab)
- Francisco Pereira (searchmight, Matlab)
- Gael Varoquaux (nilearn/scikit-learn, Python)
- Jessica Schrouff (PRoNTo, Matlab)
- Martin Hebart (TDT, Matlab)
- Mitsuaki Tsukamoto (BDTB, Matlab)
- Nick Oosterhof (CoSMoMVPA, Matlab)
- Nikolaus Kriegeskorte (RSA, Matlab) [will not talk about]

Q: who uses any of the aforementioned toolkits (including PyMVPA)? Q: who uses some other (not your own) toolkit? Q: who writes "ad-hoc" code instead?

### This review is not comprehensive

- I will note where and what functionality *is* available.
   I will *not* state that some functionality is not available in a particular toolbox
- I will not provide overview of interfaces (e.g. scripting vs. GUI), but rather will reference the functionality available
- I will not talk about "sensitivities" analyses although many toolboxes allow for some

# We (as in neuroimaging) are special



# We (as in neuroimaging) are special

### Machine-learning folks

 construct the **best** predictive model given a large array of samples
 characterize the model by accuracy of classification on some canonical datasets

# We (as in neuroimaging) are special

### Machine-learning folks

 construct the **best** predictive model given a large array of samples
 characterize the model by accuracy of classification on some canonical datasets

### We (Neuroimaging) folks

- construct a model good enough to state that data contain information of interest
- use summary statistic computed over obtained accuracies to support claim of presence of the signal of interest in **new** dataset

Gut feeling (https://en.wikipedia.org/wiki/Feeling)

Gut feeling (https://en.wikipedia.org/wiki/Feeling)
 Priors (expertise, publications, NeuroSynth.org)

Gut feeling (https://en.wikipedia.org/wiki/Feeling)
 Priors (expertise, publications, NeuroSynth.org)
 Are results *trustworthy*?

#### Gut feeling (https://en.wikipedia.org/wiki/Feeling)

- Priors (expertise, publications, NeuroSynth.org)
- Are results trustworthy?
  - Stable
  - Reproducible
  - Not "random"

## **Beliefs**

| Fisher's Beliefs Regarding p Values |                                                                                                                                     |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| p value                             | Fisher's statements                                                                                                                 |
| .1 to .9                            | "Certainly no reason to suspect the hypothesis tested" (p. 79)                                                                      |
| .02 to .05                          | "Judged significant, though barely so these data<br>do not, however, demonstrate the point beyond<br>possibility of doubt" (p. 122) |
| below .02                           | "Strongly indicated that the hypothesis fails to account for the whole of the facts" (p. 79)                                        |
| below .01                           | "No practical importance whether p is .01 or<br>.000001" (p. 89)                                                                    |

#### see "Dance of the p Values"

https://www.youtube.com/watch?v=50L1RqHrZQ8

Wright, D. B. (2009). Ten statisticians and their impacts for psychologists. *Perspectives* on *Psychological Science*, 4(6):587–597

Statistical significance testing can improve the "level of trust" in observed results

## Factors ... affecting "level of trust"

### negatively

- Software bugs [Do you trust your tools?]
- Experimental design bugs
- Analysis *bugs* I: double dipping
- Analysis *bugs* II: exploitation

## Factors ... affecting "level of trust"

#### negatively

- Software bugs [Do you trust your tools?]
- Experimental design bugs
- Analysis bugs I: double dipping
- Analysis bugs II: exploitation

#### positively

Statistical significance of the results

## Factors ... affecting "level of trust"

#### negatively

- Software bugs [Do you trust your tools?]
- Experimental design bugs
- Analysis bugs I: double dipping
- Analysis bugs II: exploitation

#### positively

Statistical significance of the results

### All of the above is not MVPA-specific, but

"With great power comes great responsibility" (Uncle Ben)

Under assumption of bug-free implementation, how can existing toolboxes help to improve the "level of trust" in our MVPA results?

# Experimental design bugs

### Major manifestations

- Imbalances
- Trial order effects

# Experimental design bugs

### Scrutinize design (per subject)

- Review labeling stats: PyMVPA (dataset.summary(), includes trial order stats), PRoNTo
- "Decode" the design: TDT (not based on trial-order)
- Remove overlaps: PRoNTo

# Experimental design bugs

### Scrutinize design (per subject)

- Review labeling stats: PyMVPA (dataset.summary(), includes trial order stats), PRoNTo
- "Decode" the design: TDT (not based on trial-order)
- Remove overlaps: PRoNTo

### Avoid inbalance

- Mean the trials. Don't!: introduces spurious signal
- Sub-sample: PyMVPA, CoSMoMVPA (disallows imbalance, and allows re-balancing), TDT, BDTB
- Metrics other than overall accuracy
  - AUC: scikit-learn, PyMVPA, TDT
  - balanced accuracy/mean of per-class accuracies: PRoNTo, PROBID, TDT

# Analysis bugs I: double dipping (DD), circular analysis

#### Cross-validation constructs

- Split according to natural confounds (e.g. runs/sessions): all
- Flexible (PyMVPA, nilearn, CoSMoMVPA, TDT) or more restricted (PROBID, searchmight, BDTB) forbidding double-dipping
- Combined with pre-processing, such as feature selection or tranformation (e.g. PCA): PyMVPA, scikit-learn, CoSMoMVPA, TDT, PRoNTo

# Analysis bugs I: double dipping (DD), circular analysis

#### Cross-validation constructs

- Split according to natural confounds (e.g. runs/sessions): all
- Flexible (PyMVPA, nilearn, CoSMoMVPA, TDT) or more restricted (PROBID, searchmight, BDTB) forbidding double-dipping
- Combined with pre-processing, such as feature selection or tranformation (e.g. PCA): PyMVPA, scikit-learn, CoSMoMVPA, TDT, PRoNTo

#### Nested cross-validation

- Parameter selection: scikit-learn, PRoNTo, TDT, (PyMVPA on example, convenience – coming)
- Recursive feature selection/elimination: PyMVPA, PROBID, scikit-learn, TDT

# Analysis bugs II: exploitation of the models



Palatucci, M. and Carlson, A. (2008). On the chance accuracies of large collections of classifiers. In *Proceedings of the 25th International Conference on Machine Learning* 

## Analysis bugs II: exploitation of the models

### Prevention mechanisms

- Nested CV model selection (scikit-learn, PRoNTo, TDT, PyMVPA)
- Some toolboxes restrict variety of available classifiers to mitigate
- Some expose as many as possible to demonstrate it: PyMVPA: clfswh comes with >= 36 of ready-to-be-abused clfs (including a few "Random" ones)

## Analysis bugs II: exploitation of the models

### Prevention mechanisms

- Nested CV model selection (scikit-learn, PRoNTo, TDT, PyMVPA)
- Some toolboxes restrict variety of available classifiers to mitigate
- Some expose as many as possible to demonstrate it: PyMVPA: clfswh comes with >= 36 of ready-to-be-abused clfs (including a few "Random" ones)

#### Recommendations

- Establish the "best" pipeline on an independent sample/study
- Verify absent "results" on random/unrelated data

# Significance estimation

### H0 distribution estimation (randomization approaches)

- Dummy classifiers (PyMVPA, nilearn/scikit-learn, PRoNTo)
- Random, from another experiment(s), outside of the brain data
- MC permutation (PyMVPA, nilearn/scikit-learn, CoSMoMVPA, PROBID (2 class), TDT, PRoNTo)
  - a must #1: within each run (we seems to be in clear)
  - a must #2: permutation for all CV folds at once
  - maintaining temporal structure. PyMVPA:
    - maintaining target labeling in test portion only
    - labels reassignment (strategy='uattrs')
    - reassignment of labeling across sessions/chunks
      (strategy='chunks')
- All can do semi-parametric; PyMVPA can also perform semi-parametric estimation

# Significance estimation: searchlights

#### Make it feasible + multiple comparison problems

- Simple classifiers == fast: GNB/M1NN searchmight, PyMVPA
- Spatial sub-sampling (Björnsdotter et al., 2011): PyMVPA
- Per-subject randomization + bootstrap (Stelzer et al., 2013):
  - PyMVPA (cluster-level with some minor mods + FDR correction on cluster level p's)
  - CoSMoMVPA (cluster-level based, with TFCE correction)
- "Flipping" around chance-level of actual performance metrics to simulate chance distribution of the mean (CoSMoMVPA)

"With great power comes great responsibility"

-Uncle Ben

- Significance testing should provide "support" but not the ultimate verdict
- MVPA is/can be more sensitive to experimental design flaws
- Avoid common pitfalls: good randomization of trial orders and scrutiny of the design and results is a must
- Existing MVPA toolboxes provide a complementary spectrum of methodologies to help avoiding pitfalls and provide statistical assessments of the results

# Thank you!

### References

Björnsdotter, M., Rylander, K., and Wessberg, J. (2011). A monte carlo method for locally multivariate brain mapping. *NeuroImage*, 56(2):508–516.

- Palatucci, M. and Carlson, A. (2008). On the chance accuracies of large collections of classifiers. In Proceedings of the 25th International Conference on Machine Learning.
- Stelzer, J., Chen, Y., and Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size control. *NeuroImage*, 65(0):69 – 82.

Wright, D. B. (2009). Ten statisticians and their impacts for psychologists. Perspectives on Psychological Science, 4(6):587–597.